An Introduction to HPC Tools
Research

Karen L. Karavanic

Research Scientist
New Mexico Consortium

and

Associate Professor of Computer Science
Portland State University

An Introduction to HPC Tools
Research

Portland State «karen L. Karavanic

UNIVERSITY

Subliminal Slide: You want to go to graduate school
here...

]

-
-
- e
-

- .
o
_
—
-
e
-
-
a4
-
.
-

Portland State Karen L. kKaravanic An Introduction to HPC Tools ,

UNIVERSITY Research

In the Beginning...

e 1991 | started graduate school at U Wisconsin

e 1993 | started working with the Paradyn Parallel Performance Tools
Group

Hmmm, what’s a
parallel
performance
tool??

. An Introduction to HPC Tools
P()rﬂand State Karen L. Karavanic Research

UNIVERSITY

Parallel Performance Tools

1. Goal: Locate the Bottleneck
Applications large/long running
— Profiling

2. Problem: Synchronization

— MPI applications:
* one MPI rank waiting to receive a message
e Barrier: EVERYONE waiting for slow rank to reach barrier

— Tracing

3. Scaling
— Intel Paragon: 1-4000 Processors/Nodes !!
— How to measure all of the nodes??
— Perturbation: we can no longer measure everything

An Introduction to HPC Tools
Research

Portland State «karen L. Karavanic

UNIVERSITY

Paradyn Parallel Performance Tools

Key insight (Hollingsworth/Miller 1994): what if
we could insert and remove instrumentation on
the fly, as the application runs??

Dynamic instrumentation

Automated Performance Diagnosis
— Define common problems and “hypotheses”

— Search through the space of all possible problems
(“why”) places in the code (“where”) and phases
throughout the long run (“when”)

First Demo: SC Exhibit Hall

My Dissertation: Using historical data to make
this more efficient

An Introduction to HPC Tools
Research

Portland State «karen L. Karavanic

UNIVERSITY

1993 to present: Never Boring...

* Threading
— Scalability Challenges: 1,000s-10,000 of threads

e How to measure all of the threads for each node??
* New bottlenecks: locking
e How to visualize??

e Multicore

— Scalability Challenges: 2-8x cores/processor
 How to measure all of the cores for each processor??
* Perturbation
* New Bottlenecks: shift to memory

An Introduction to HPC Tools
Research

Portland State «karen L. Karavanic

UNIVERSITY

1993 to present: Never Boring...

* Manycore

— Example: General Purpose GPU Computing
e 1000s of low power compute cores
* Used as “accelerators” to CPUs

* High level directives: how to explain problem to
programmer?

* Power/Cooling

— Great Berkeley Quote: You can’t cause more climate
problems powering your data center than you solve
with your science

— Exascale Reality: We cannot generate enough power
to simply expand our systems

— New Challenge for tools: measure/report power/heat

An Introduction to HPC Tools
Research

Portland State «karen L. Karavanic

UNIVERSITY

Trinity @LANL

Architecture Cray XC30

Memory capacity >2 PB of DDR4 DRAM

Peak performance >40 PF

Number of compute nodes >19,000

Processor architecture Intel Haswell & Knights Landing
— 60 cores/processor

Parallel file system capacity (usable) >80 PB

Parallel file system bandwidth (sustained) 1.45 TB/s
Burst buffer storage capacity (usable) 3.7 PB

Burst buffer bandwidth (sustained) 3.3 TB/s
Footprint <5,200 sq ft

Power requirement <10 MW

An Introduction to HPC Tools
Research

Portland State «karen L. Karavanic

UNIVERSITY

Trinity@LANL

An Introduction to HPC Tools
Research

POI'tland State Karen L. Karavanic

UNIVERSITY

We sti

We sti
tracefi

Tools Challenges for Trinity

| have perturbation limits.... Only worse

| can’t collect all of the data into a huge
e... only worse

Now we can’t move all of the data through
the interconnect

We have to worry about how much power our
tools need (“power cap”)

Simple aggregation may hide performance
problems

An Introduction to HPC Tools

Portland State «karen L. Karavanic T

UNIVERSITY

Research

Current Status

POI'tlEll’ld State Karen L. Karavanic An Introduction to HPC Tools ”

UNIVERSITY Research

MPI Tracing

e Collect MPI traces: comm type, participants

e Visualize traces with various tools, e.g. Jumpshot (ANL)
Jumpshot: Asynchronous Dynamlc Load Balancing

Processes

Alv ||

B

R AIEAENR-4 S

adlb.14n-m0.np256.mic-a.mp

@A&@ @ 5 @

Lowest / Max. Depth Zoom Level
0/15

Cumulati

@ world_rank

-5

192.826

Global Min Time View Init Time
0.0001843647 192.825903744

[

]
192.828 192.83

Global Max Time
286.2358403682

Zoom Focus Time
192.8234287273

View Final Time Time Per Pixel Row
i
157 sy Go0001 14354 el
TimeLines 37.66

RS

; . . Fit All Row
192.832 192.834 192.836 192,838 192.84 192.842 LW

Instruction-level Analysis

e Analyze dynamic characteristics of applications
using a binary instrumentation framework, e.g.,
Valgrind, Pin

e Sample analyses

— instruction mix (e.g. floating point, integer, branch,
memory)

— computational intensity (flops per memory access)

— percentage of floating point ops that are vectorized
(SIMD)

— reuse distance

*unique cache lines touched between two accesses to same
cache line

egathered using detailed simulation of caches in your CPU

. Qingoint sources of cache misses in your code

3

Call Path Profiling

Measure and attribute costs in context
sample timer or hardware counter overflows
gather calling context using stack unwinding

Call path sample

Calling context tree

return address

return address
return address '
instruction pointer %
Overhead proportional to sampling frequency...
...not call frequency

4

"% PatchGodunov.cpp

nalyzing Chombo@1024PE with hpcviewer

Experiment Aggregate Metrics
Ymain
v B»282: amrCodunov()

hpeviewer: amrCodunov3d.Linux.64.CC.ftn.OPTHICH.MPl.ex
" PolytropicPhysics.cpp = LevelGodunov.H % PolytropicPhysicsF.f ™% AMR.cop 3 "% AMRH =0
// Advance the finer level ond take into account possible f
// subcycling by allowing for a change in "stepsleft™.
//[NOTE: the if() test looks redundant with cbove, but it is nf COStS Or
/7 may change during a regrid(); ° °
f; Source pane uring a subcycle I don't know.] IﬂllﬂEd procedures
stepsle 1meStep(a_level+l,stepsleft, timeBoundary); [] Ioo ps
// The first time the next finer level time aligns with the cuf ° °
// level time. After that this is not the case. - funCtlon Ca"S In fU" context
//[NOTE: this if() test _is_ redundant. <dbs>)
“8
WALLCLOCK (us)Sum () » WALLCLOCK (us)Mean () WALLCLOC
1.92¢+11 100 &% 1.80c+08
1.92¢+11 100 &% 1.80c+08
1.87e+l1l 97.4% 1.75e+08
1.77e+11 92.1% 1.66c+08

¥loop at amrCodunov.cpp: 186

¥loop at amrGodunov.cpp:

¥ B 216 AMR:.run(double, int)

[vinlined from AMR.cpp: 604
V1o0p at AMR.CPp. 615

| ¥Ioop at AMR.Cpp. 622 |

¥ B»654: AMR::timeStep(int, int, bool)

| Yinlined from AMR.cpp: 794 |

[“loop at AMR.cpp: 943 |

v E»953: AMR::timeStep(int, int, bool)

¥inlined from AMR.cpp: 794
» B»903 AMRLeveIPolytropic(-.‘.as::advance
> B» 919 BoxLayout:size() const
» B»911: AMRLevelPolytropicGas::computeDt()
AMR.cpp: 795
» B> 967: AMRLevelPolytropicGas::postTimeStep()

1.77e+
|navigation pane | iz;;:;]metric pane EIES

+08

1.77e+11
1.77e+1l
1.77e+1l
1.77e+1l
1.77e+11
1.77e+11
1.77e+11
1.73e+11
1.73e¢+11
1.73e+11
1.73e+11
5.37e+06
2.04e+05
2.40e0+04
1.20e+04

» B» 801 std:.ostream& std::ostream::_M_insert<long>(long) 1.20e+04

-~

92.1%
92.1%
92.1%
92.1%
92.0%
92.0%
92.0%
90.3%
90.3%
950.3%
90.3%
0.0%
0.0%
0.0%
0.0%
0.0%

1.66c+08
1.66c+08
1.66c+08
1.66c+08
1.66c+08
1.66c+08
1.66c+08
1.62¢+08
1.62¢+08
1.62¢+08
1.62¢+08
5.04c+03
1.91e+02
2.25¢+01
1.12¢+01
1.12¢+01

Understanding Temporal Behavior

e Profiling compresses out the temporal dimension
— temporal patterns, e.g. serialization, are invisible in

profiles
e What can we do? Trace call path samples
— sketch:
* N times per second, take a call path sample of each
thread

Procegsegrgmg_j;h_esam.ples—fmﬁeach"thread along a time line
* view h¥f the 2Rscutieif -*2;;-- to right
. .?::.:..: . .:.:q.‘ of° ’:.:'T:.l K .:.:‘.:.: - stack
el SR TR, < Ry

as -.:.E.*. Py .::.E’ sI|c e of an execution

Understanding Temporal Behavior

e Profiling compresses out the temporal dimension

— temporal patterns, e.g. serialization, are invisible in
profiles

e What can we do? Trace call path samples
— sketch:

Processes

%hpctraceviewer: detail of FLASH3@256PE

Load imbalance among threads appears as different
lengths of colored bands along the x axis

8 Trace View DRl GRS O™ T C0 Hcanramn =0
0 .

Time Range: [72.4435 89.327s] Rank Range: [27.76] Cross Mair (84,7975, 41)

W peprn view U Summary view °BD

Formal Verification: Model Checking

Example tool: Spin (http://spinroot.com)

e Formal verification of parallel software
— performs on-the-fly exploration of execution state spaces

e Used to identify logical design errors in parallel programs
— e.g., communication and synchronization protocols, data structures

e Supports multiple communication models
— message passing: both rendezvous and buffered
— communication through shared memory

e Checks logical consistency of a specification
— reports deadlocks, race conditions, incompleteness
— identifies assumptions about relative speeds of processes

e Verifies properties specified with linear temporal logic

e Specify system descriptions in PROMELA modeling language
e

Dynamic Analysis

e Valgrind: framework for dynamic analysis tools

http ://Va |gr| n d .0 rg Nicholas Nethercote and Julian Seward.
. Valgrind: A Framework for Heavyweight Dynamic Binary
— two useful valgrind tools Instrumentation. Proceedings of ACM SIGPLAN PLDI 2007.

* memcheck: detects memory-management problems
— accesses memory it shouldn't

e areas not yet allocated, areas that have been freed, areas past
the end of heap blocks, inaccessible areas of the stack

— reads uninitialized values
— leaks memory
— performs double or mismatched frees of heap blocks
* helgrind: finds data races in multithreaded programs
— memory locations accessed by >1 thread, unprotected by a lock

e A notable race detector: cilkscreen

G.-l. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting data races ———
in Cilk programs that use locks. Proceedings of SPAA 1998. 0

~~ A Sophisticated Shared-Memory Synchronization

- @ Algorithm 0000000

Node-level
queues

Socket-level
gueues

Die-level
queues

Core-level
queues

Lock holder Lock passing - > () Spin waiting

 High performance locking protocol for NUMA machines

— lock-holder typically passes lock to a “nearby” lock-waiter
e improves locality of shared data

— limit lock passing to nearby threads to avoid starvation
e Accesses shared variables with RMW operations, loads,

__ Milind Chabbi, Michael Fagan, John Mellor-Crummey. High Performance Locks for Multi-level _
NUMA Systems. PPoPP 2015. San Francisco, CA. Feb, 2015. To appear.

Features of the Algorithm

e Tree-structured organization of queuing locks at each
level

e Recursive protocol (in both acquisition and release)

e Complex interactions between participating threads
at various level of hierarchy
— Needs precise ordering of memory updates

e Generous use of

— read-modify-write operations (compare-and-swap and
swap)

— reads and writes to shared variables

e Support for thread abort at any point in the protocol
— protocol is “state-full”

—
2

A Concurrency Bug!

e Symptom: multiple threads simultaneously in the
critical section

* |nvestigation
— no obvious flaw in the algorithm
— no obvious issue in the implementation
— code+algorithm reviewed by multiple synchronization
experts
 Traditional debugging efforts failed

— debugging with assertions
e assertions trigger long after the bug occurs

e can’t backtrack to see thread interleaving that leads to assertion
failure

— single stepping in the debugger (gdb)
*bug sporadically appears only with > 9 threads
*does not appear when closely observed (a “Heisenbug”)

—
3

- inPlay: Deterministic Replay of Parallel Programs

=R 4

Buggy _
multi-threaded 1+ Record a log of “buggy” execution
program (Leave overnight with multiple runs to hit assertion / segfault)

records access order (RAW, WAR, and WAW)
to shared memory locations

2. Replay the execution with “buggy” thread interleaving
7 \
. PinPlay ,
(Replay Engine)

| L 2
~ R

Analysis tools +

debugger interface
- J)

.

PinPlay: Key Features

 PinPlay records and replays

— access order (RAW, WAR, and WAW) of shared
memory locations

— a myriad of other details needed for execution replay

— Single-threaded, multi-threaded, and multi-process
programs

e Logger: slowdown up to 147X
e Replay: slowdown up to 36X

N

g++ Code Generation Bug Corrupts Algorithm!

e Source code

// Expect atomic 64-bit write
cacheline aligned 64 bit var = Oxdffffffffffffffd;

e GNU g++ 4.4.5 generated machine code Bad interleaving
movl SOxfffffffd, (%$rax) // write low 32-bits

movl $Oxdfffffff,0x4 (%rax) // write high 32—bit§("*_

e Splitting this 64-bit write into two parts creates a
small window of inconsistent state

e Bug was not noticeable at source (the point of write)

e Bug was not noticeable at sync (read a clobbered, yet
valid, 64-bit value)

e Required a record/replay tool to step through the
execution under debugger to identify the
Inconsistent state

—
6

Interactive Debugging

Popular tools: TotaIV|ew(Rogue Wave) DDT (Allinea)

What can be debugged?

nnnnnnnnn

— MPI applications

comm3

— multithreaded processes

— accelerated codes
Laptops to supercomputers -
— debug over 100K processes

Integrated GUI for controllmg entire apphcanon

— variable value inspection in different processes
— data visualization

Reverse debugging with Totalview’s Replay Engine
— records orderings and state changes as program executes
— recovers prior states on demand with “backward stepping”

Figure credit: http://www.allinea.com/sites/default/files/
uploads/products/sparkline.png

*
7

Summary

e Lots of tools available

e Existing tools address diverse needs
— proving parallel code correct
— detecting data races
— repeating intricate thread interleavings for debugging
— interactive debugging of huge process counts
— understanding MPlI communication by tracing and visualization
— profiling to understand where an application spends its time
— visualizing sample traces to understand behavior over time

e Tool frameworks for building custom tools

e Challenges
— better tools for accelerated computing

— tools for correctness checking, debugging, and performance analysis of a
billion dynamic tasks!

* measurement, analysis, attribution, presentation

—
8

References

e Spin: http://spinroot.com

e valgrind: http://valgrind.org

e Pin: http://pintool.org

e Pinplay: http://pinplay.org

e cilkscreen: http://www.cilkplus.org

e totalview: http://www.roguewave.com
e ddt: http://www.allinea.com

e jumpshot: http://www.mcs.anl.gov/research/
projects/perfvis/software/viewers/

e HPCToolkit: http://hpctoolkit.org

—
9

Acknowledgments

* Tools slides courtesy of John Mellor-
Crummey, Department of Computer Science,
Rice University

* Jumpshot figure: Rusky Lusk

An Introduction to HPC Tools
Research

Portland State «karen L. Karavanic

UNIVERSITY

30

Want to Learn More about Tools?

* At SC15:

— Exhibit Floor Tools Demos:
* |IBM, The Portland Group, NVIDIA, Intel, ... also the major labs

— Research Posters Exhibit
* Tonight 5-7pm
— Tech Papers

* Wed 1:30 — 3pm Performance Tools Session
* |nterested in internship/job at New Mexico Consortium?
Contact: karavan@pdx.edu

* Interested in graduate school at Portland State University?
Contact: karavan@pdx.edu

— www.cs.pdx.edu/~karavan

. An Introduction to HPC Tools
Portland State Karen L. Karavanic Research 31

UNIVERSITY

